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J. Phys. A: Math. Gen. 13 (1980) 1287-1295. Printed in Great Britain 

Solutions for a relativistic string in a uniform static 
external field 

Dipankar Ray 
Department of Physics, Queen Mary College, Mile End Road, London E l  4NS, England 

Received 18 December 1978, in final form 16 July 1979 

Abstract. Some exact solutions are obtained for the non-linear coupled partial differential 
equations obtained by Lund and Regge for a relativistic string in a uniform external field. 

1. Introduction 

If a moving string is considered as a two-dimensional space-time surface then many 
physical characteristics of the string are represented by the metric of the surface. Let 
the metric be given by 

ds2 = cos2 0 d u 2  + sin2 0 dr2 ,  

where U is a space-like coordinate and r is a time-like one. 

external field, 0 satisfies the following equations: 
Lund and Regge (1976) have shown that, for a string moving in a uniform static 

0,, - 0,, + c sin 0 cos 0 + (cos 0/sin3 d)(A? - A  :) = 0 

(A, cot2 e), = (A, cot2 0), 

( l . l a )  

(1 . lb)  

where 
2 2  0, = a o / a ~ ,  A, E ah/ar, Oug = a  0/du and so on. 

c is the constant representing the uniform static external field and A is a function 
introduced for convenience. 

Solutions for (1.1) for the case when 0 and A are both functions of cr have been 
obtained by Lund and Regge (1976). In this paper we seek solutions of the same 
equations under the restrictive condition that at least one of A and 0 is a function of a 
linear combination of T and U. 

2. Solutions for A = A (a7 + b a )  

Because of the Lorentz-invariant character of equations (1. l), it is obvious that if A is a 
function of a linear combination of T and cr then one can, without loss of generality, set 
A = A ( 7 )  or A = A (U) or A = A ( T  - U). 
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1288 D Ray 

If A = A  ( T ) ,  then using equation ( l . l b )  one can set 

tan 6' = TC 
where 

T = T ( 7 ) ,  

A, = * T ~ .  

C = C ( a )  

and 

Using equations (2.1) and (2.2) one can reduce equation (1 . la )  to 

+ ( l +  T2C2)2+~X4 ] =o .  (2.3) C4 

Differentiating equation (2.3) with respect to T and a, we obtain 

If neither T nor C is constant, then from equations (2.3) and (2.4) we obtain 

T ~ , / T ~  - x?/c2 = C ( I  + (2.5) 

Differentiating equation (2.5) with respect to T and a, we obtain 

T,C,/ T3C3 = 0. (2.6) 

This is irnpossible unless at least one of T and C is constant. If at least one of T and C 
is constant, then we see from equation (2.1) that 6 is a function of T or a function of a, or 
a constant. 

In a similar way one can show that, if A = A (a) ,  then also 6' must be a function of T or 
a function of a> or a constant. 

For A = A (7 -a) ,  it can be checked by direct substitution that no solution exists for 
equation (1.1). 

Therefore, all the solutions of equation (1.1) for which A is a function of a linear 
combination of 7 and a are included in the solutions of equation (1.1) for which 6 is a 
function of a linear combination of T and CT. However we note that for solutions of 
equation (1.1) A and 6 may be functions of different linear combinations of 7 and cr. 

3. Solutions for 8 = @ ( a  + b a )  

As before, owing to the Lorentz invariance of equation (l.l), one can set 6' = 6'(cr) or 
6' = 6 ( 7 )  or 6' = 6 ' ( ~  - a).  Therefore we consider the following cases. 

3.1. 

e = e ( g )  with 0, # 0. 

We shall show that for this case 

A = p 7 + n l  tan2 0 da,  

(3.1) 

(3.2) 
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where p and n are constants. The proof is as fo!lows: for A, = 0 we obtain, from 
equations (1. lb)  and (3.1), 

A,, = 0, 

which is equivalent to equation (3.2) with n = 0. For A, # 0 we proceed as follows: 
differentiating equation (1.1 a )  with respect to 7 and using equation (3. l), 

A J , ,  -huh,, = 0. (3.3) 

Also from equation (3*1), one can simplify equation ( l . l b )  to 

A,, -A,, + 2hU6,/sin e cos 6, = 0. 

From equations (3.4) and (3.3), 

A,A,, -A,& + 2h,A,6,/sin 8 cos 6 = 0, 

which can be rewritten as 

(A,/A,), + 2(AT/AU)&/sin 19 cos 0 = 0. 

Equation (3.5) can be integrated to give 

= PA, Cot2 e, where P = P ( T ) .  
Equation (3.6) can be solved for A to give 

A = A ( Y ) ,  

Also, from equations (1.1~) and (3.1), 

where y = U + U, u = [ /3 dT, 

2 2  A , - h , - , = a ( ~ ) ,  

where 
4 a = a (a )  = (sin3 e/cos ~)e,, - c sin 8. 

From equations (3.7) and (3.8), 

A;(p2-tan4 6) = a ,  

[(@'-tan4 e)/al,- - ( 1 / A ; ) ,  - Y,- tan2 6 
[ (~ ' - tan~o)/c-uI ,  (1/~:), Y ,  P ' 

which on simplication give 

-p2a, a t an46  
a tan26 tan'@( a ), 

Differentiating equation (3.11) with respect to T and a, 

= 2PT. -____- ~ 

- 2 ~ ~ ~ ( a , / a  tan2 e), = 0. 

Pi  = 0, 

Therefore either 

or 
2 (a,/a tan O), = 0. 

(3.4) 

v = [ tan2 6 du. (3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.120) 

(3.12b) 
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If equation (3.126) is true, then 

a,/a tan2 8 =constant. 

From equations (3.11) and (3.13) 

a tan4 8 
tan 8( (Y ): - ( p 2 M  + 2PT) = 2 - 

(3.13) 

(3.14) 

Since the left-hand side of equation (3.14) is a function of T only and the right-hand 
side is a function of a only, equation (3.14) can hold only if both are constants. 

a tan4 8 
tan28( a ),, =constant. -- (3.15) 

Then from equations (2.10), (3.13) and (3.15) we obtain three relations giving (Y and 
8 as functions of a, and it can be checked that the three relations cannot be satisfied 
simultaneously except by making 8 a constant, which is impossible. Therefore ( 3 . 1 2 ~ )  
must hold, i.e. 

p =constant = m(say). (3.16) 

From equations (3.10), (3.11) and (3.16) 

2 a 
A , =  2 = constant = n 2  (say) 

m -tan, 8 
(3.17) 

or A = mnT + n 5 tan2 8 da,  which reduces to equation (3.2) with p = mn. Therefore 
equation (3.2) holds for both A, = 0 and A, # 0. Using equations (3.1) and (3.2) one can 
solve equation (1.1) for 8 to obtain 

de  
1 / 2  = fa, I (c sin2 8 -p2/sin2 8 + d - n2/cos2 8) 

(3.18) 

where p ,  d and n are constants of integration. It can be checked by direct substitution 
that equations (3.2) and (3.18) together satisfy equation (1.1). 

3.1.1. 8 = 8(a), 8, # 0 ,  A, # 0 ,  A, # 0. Here solutions are given by equations (3.2) and 
(3.18) with p # 0, n # 0. We note that for given values of p ,  d and YE, if 8 is sufficiently 
close to kn-/2 where k is an integer, then in this case the integral in equation (3.18) 
becomes imaginary. Therefore there exists k such that 

kn-/2 < 8 < ( k  + l)n-/2; (3.19) 

or, without loss of generality, we can set k = 0, i.e. 0 < 8 < n-12. 
Setting u = sin2 8, equation (3.18) can be rewritten as 

du 2 1 / 2 =  *a. (3.20) [ [ -cu3  + u 2 ( c  - d )  + u(p2+ d - n2)  - p  1 
The condition that U, is real further requires that 

f ( ~ )  = - c u ~ +  U * ( C  - d ) +  u ( p 2 + d  -n2) -p22O.  (3.21) 

From equation (3.19), O s  u s 1. However, from equation (3.21), 

f(0) = -p2 < 0 and f( 1) = -n * < 0.  
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Therefore there must exist 5 and 77 such that 

f(5) = 0 =f(77), 

f (-CO) ’ 0 and f(0) < 0; 

and f ( u ) s O  for O <  17 < U  < 5 <  1. Also from equation (3.21) we note that 

therefore there exists f < 0 such that f ( f )  = 0. Therefore [,q, f are the three roots of the 
equation f ( u )  = 0, or equation (3.20) can be rewritten as 

(3.22) 

where 
f < O < V < U < 5 < 1 ,  

5 + 77 + ( = 1 - d/c,  

( ~ - I ) ( I - T ) ( ~ - O =  -n2/C, 

5 4  = - P 2 / C .  

From equation (3.22) we see that for U to be real and bounded between 0 and 1, it can 
only increase from 77 to 5 and then decrease from 5 to 7, and so on as cr increases. 
Therefore the solutions can be written as follows: 

U =sin 8, 2 

A = ( - c ~ ~ f ) ” 2 + [ c ( 1 - ~ ) ( 1 - ~ ) ( l - f ) ] l i 2 ~  tan2 Ode, 

r is any integer and 5, 7 and f are constants of integration such that 

f < O < ? l < t < l .  

3.1.2. 6 = e(a) ,  0, f 0 ,  A, = 0, A, f 0. Here, solutions are given by equations (3.2) and 
(3.18) with p = 0, n # 0. We note that if, for given values of p ,  d and n, 6’ is sufficiently 
close to (2k + 1).rr/2 where k is an integer, then in this case the integral in equation 
(3.18) becomes imaginary. Therefore there exists k such that 

4(2k-- l )rr<e<4(2k+l)rr .  

Without loss of generality we can set k = 0, i.e. 

-rr/2 < e < rr/2. 

Therefore equation (3.18) reduces to 
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where v = sin 6, and as before Y = sin2 6, 

g ( u ) = - C U 2 + ( C - - d ) u + ( d - n 2 ) .  (3.24) 

From equation (3.24), g(1) = -n2< 0. Since g(u) must be positive for some value of U 
between 0 and 1, there exists v such that 

O < v < l  (3.25) 

and g(v) = 0. However, two roots of a quadratic can be either both real or both 
complex. Therefore two roots of g(u)  = 0 must be real, or there exists p such that 

d U )  = - c (u  - p ) ( u  - v). (3.26) 

From equations (3.24) and (3.26) 

(1 -p)( l -  v )  = n 2 / c 2 .  

From equations (3.25) and (3.27) 

w < 1 .  

(3.27) 

3.1.2(a) p < 0. Here t_he condition that 6 and a are real requires that as a increases t' 
oscillates between - J v  and Jv. Therefore the solutions are 

dv 
if 2r12 < a < (2r + 1112, 2 1 / 2 = a  

2r12+-= 
Jc I' 4' [ ( U 2 -  p ) ( v  - t' )I 

if (2r + 1)12 < a < (2r + 2)12, (3.28) - dv 
2 w-ff  (2r + 1)12 +- 

J, I-' U [ ( t ' 2 - P ) ( v - u  11 
dv I2 = : A = c(1 - p ) ( l -  i) I tan2 6 da ,  IJ" v = sin 0, 

Jc - J v  [ ( U 2  - p ) ( v  - U 11 

r is any integer and p,  v are constants of integration such that 

p < o <  v < l .  

3.1.2(b) p = 0. Here the integration can be explicitly done. 

6 = sin-'(&sech(a&)), 

A = (c  - v )  

where v is a constant of integration such that 

O < v < l .  

tan2 6 da, I (3.29) 

3.1.2(c) 0 < p < 1. Since p. and v are both between 0 and 1, without loss of generality 
we can take p < v. Further, since equation (3.30) becomes imaginary if p = v, we obtain 
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p < v. v can now oscillate between J p  and J v  as a increases, and the solutions are 

dv 
if 2r13 < a < (2r + 1)13, 2 1 / 2 = a  11 

dv 
2 1 / 2 ’  

1 3  =- 

A = c(1 - p ) ( l +  v )  

[ ( u 2 - p ) ( v - v  13 

p, v are constants of integration such that 

(3.30) 

and r is any integer. 

3.1.3. 8 = e((+), 8, # 0, A, # 0, A, = 0. Hence, solutions are given by equations (3.2) 
and (3.18) withp # 0, IZ = 0. In this case we note that if, for any given value of p ,  d and n, 
8 is sufficiently close to k.rr where k is an integer, then the integral in equation (3.18) 
becomes imaginary. Therefore there exists k such that 

k.rr < 0 < ( k  + 1 ) ~ .  

Without loss of generality we can set k = 0 

or, setting z =cos 8, equation (3.18) reduces to 

where 

h (*2) 3 cz4 - z2(2c + d )  + (c  + d - p2). 

h(1)  = - p 2 < o .  

h (2) = c(z - y ) ( z 2  - 8) 

O < y < l ,  

or, from equations (3.32) and (3.33), 

Also 

Using arguments similar to case 3.1.2, 

where 

(1 - y)( l  - 8) < 0. 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 
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From equations (3.34) and (3.35), S > 1. Now the solutions can be written down as 
follows: 

dz if (2r + 1)14< U < (2r + 2)14, 
1 '  

(2r+1)14+-[ J i  [ ( Z ~ - ~ ) ( Z ~ - S ) ]  1/2 = U 

(3.36) 
z = COS e, 

y, S are constants of integration such that 

O < y < l < S .  

3.2. 

8 = O ( T )  with e, # 0. (3.37) 

Proceeding as in case 3.1, solutions can be obtained for this case too. However, 
solutions for e = e ( r )  can also be obtained from solutions for 8 = O(U) by using a 
transformation as follows. 

From equation (1.1 b )  there exists xu such that 

(3.38) 2 2 A, cot e =xu, A, cot e =xu. 

A ' = x ,  r' = U, U' = r. (3.39) 

We note that equations (1.1) remain invariant under the transformation 

This reduces solutions for 8 = B(v) to solutions for 0 = e ( r ) .  

3.3. 

e = e(r  -U ) .  

Set 

u = r + v ,  v = r - f f .  

Using equation (3.40), equations (1 . l )  reduce to 

c sin e cos e + (4 cos 0/sin3 8)A,A, = 0, 

A,, -A,A,/sin e cos 0 = 0. 

Dividing by A,, equation (3.42b) can be rewritten as 

( l / A , ) A u ,  = &/sin e COS 8 

which is equivalent to 

A, = yu tan 8, where y = y(u)  and y, = dy/du. 

Equation (3.426)' is equivalent to 

A = y t a n e + S ,  where y = y(u),  S = S ( v ) .  

(3.40) 

(3.41) 

( 3 . 4 2 ~ )  

(3.426) 

(3.42b)' 

(3.4 2 b ) " 
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Using equation (3.426)”, we see that equation ( 3 . 4 2 ~ )  is equivalent to 

yyu + yUs, cos’ e/e, = -C sin3 e cos3 8/48,, 

Differentiating equation (3 .42~)’  with respect to U and v 

~ ~ ~ ( 8 ,  COS’ ole,), = 0, 

s, COS* e/ e, = M, 

from which we can see that equation (3 .42~)’  can hold only if 

-C sin3 e cos3 8/48, = P, (3.43) 

where M and P are constants. Substituting equation (3.43) into equation (3 .42~)’  we 
see that equation (3.42), subject to equation (3.40), is solved as follows. 

4. Conclusion 

Summarily, for all the solutions of equation (1-l) ,  if A is a function of a linear 
combination of T and a, then so is 8. For solutions of equation (1. l) ,  if 8 is a function of a 
linear combination of T and a, then by a suitable linear transformation we can have 
8 = 8(a) or 8 = 8(7) or 8 = ( T  -a) or 8 = constant. Solutions for 8 = O(a) are given by 
equations (3.23), (3.28), (3.29), (3.30) and (3.36). Solutions for 8 = 8 ( T )  can be 
obtained from the solutions for 8 = 8(a) by using the transformation defined through 
equations (3.38) and (3.39). Solutions for 8 = 8 ( 7 - a )  including 8 = constant are given 
by equation (3.43). 

Of the various solutions shown here, (3.28), (3.29) and (3.36) pass through singular 
points where the determinant of the metric tensor vanishes. On the other hand, 
solutions (3.23), (3.30) and (3.43) do not pass through any singular point. For equation 
(3.43) the range of 8 is the open interval (0,1712). For each of equations (3.23) and 
(3.30) the range of 8 is some closed interval [Omin, e,,,] such that 0 < Omin < Omax < ~ / 2 .  
In a similar way, singular and non-singular solutions with 8 = 8(7) can be indicated. 

It can also be noted that another class of solutions of the same equations has been 
studied by the author (Ray 1978). 
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